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1 Introduction

Random matrix theory has been a lively topic of mathematical study for the last 30 years or so, and
it continues to find new applications. This present article is an account of my intuitive attempts to
explore and understand something of this ubiquitous but complicated subject. It is written by an
amateur with other amateur’s in mind.

Let me comment on ‘random’ in this context. The word means that the elements a;; of the
matrix are selected in a random fashion from a population which has known statistical properties,
such as probability density function (pdf) and hence mean and variance. The principal distribution
studied has been the so-called normal or Gaussian. In most cases all the elements are drawn from the
same population — so are independent and identically distributed (i.i.d.) — though some important
distributions in physics have a slightly larger variance for the diagonal elements. Bear in mind that
in a diagonalised matrix, in which all but the diagonal elements are zero, the diagonal consists of
the eigenvalues. If the off-diagonal elements are random but small compared with the diagonal ones,
the eigenvalues will still be close to the diagonal values. Thus ‘random’ implies that the diagonal
is not dominant. Also we deal with real elements in a symmetric matrix a;; = a;; for which all
the eigenvalues are real even though much of the literature is about complex Hermetian matrices.
Interest in random matrices is mainly in the statistics of their eigenvalues.

The first application of random matrices was published in 1928 by the Scottish statistician
John Wishart. He had been studying agricultural and veterinary data and was looking for correlations
between the many input variables and output variables. Values of the input variables I, 1 <k <m
could be written as a vector and were assumed to be related to the outputs O;,1 < j <n by linear
relationships, so typically

Oj = ajlll + ajgfg + aj3I3 + e+ ajnIm .

The collected relations can be written as a matrix multiplication O = Al where O is the output
vector and A the n xm matrix of elements a;;. In Wishart’s data these elements were so complicated
that there appeared almost no correlation amongst them. He therefore compared them with matrices
with purely random elements and developed statistical tests to see whether the real-world data were
actually significantly different from random. He thereby developed a multi-variable generalisation



of the well known x? (chi-squared) test used to assess whether data sets with only one variable are
significantly different from each other.

Random matrices were then largely forgotten until 1956 when the theoretical physicist Eugene
Wigner used random symmetric matrices to model the quantum mechanical Hamiltonians of heavy
nuclei. This is a many-body system in which every neutron and proton interacts with every other.
The eigenvalues of these Hamiltonian matrices give the energy levels of a nucleus, and the gap between
two levels is the energy needed to excite the nucleus from the lower state to the higher. Heavy
nuclei are so complicated that the elements of the true Hamiltonian matrix could not be calculated.
Moreover, there seemed no reason to assume correlation amongst them. Wigner therefore modelled
the Hamiltonian by a symmetric matrix of random elements, and found that their eigenvalues were
is sufficient agreement with experimental values of nuclear excitation energies. The agreement with
experiment was not exact, but had similar statistics; in particular, the distribution in excitation
energies was quite well modelled.

The subject reappeared in a different guise in 1973 following a chance meeting over tea in
the common room at Princeton between the mathematician Hugh Montgomery and the theoretical
physicist Freeman Dyson. Montgomery has been studying the statistical distribution of zeros of the
Riemann zeta function and mentioned to Dyson a formula he had found. Dyson pointed out that
this was precisely the function giving the correlations between eigenvalues of a random matrix with
a certain symmetry; the formula was in a 1967 textbook on random matrices by Mehta. Dyson had
spotted a connection between two apparently unconnected fields of knowledge — quantum physics
and number theory. Since then the statistical properties of random matrices have been studied
extensively and applications found in many diverse areas of theoretical physics, number theory and
even biology.

We may understand something of wide relevance of random matrices by noting first that
matrices in general arise is many branches of mathematics and physics where they link some multi-
valued input [ via a linear transformation into a multi-valued output O. Perhaps the most important
features of a square matrix are its eigenvalues and eigenvectors. Many matrices can be converted to
diagonal form by a similarity transformation, equivalent to rotations and reflections in n-dimensional
space, to bring the eigenvectors to lie along orthogonal axes. Then the eigenvalues lie down the main
diagonal of the matrix and all other elements are zero. This places the matrix in its most simple,
‘natural’ state. The matrix elements a;;, are essentially the direction cosines of the rotations between
two sets of axes, one pre-transformation, the other post-transformation. If the input and output
have very large dimension, and the interactions represented by the matrix are so complicated that
no pattern can be discerned amongst the matrix elements a;; and they appear uncorrelated, then
it can be quite a good approximation to let the a;; be random numbers provided they respect the
symmetry of the true matrix. By this I mean that if the true matrix is a real symmetric matrix,
the approximating random matrix must also be so, and similarly if it is complex Hermitian. In fact
Dyson identified three important types of symmetry in physics, characterised by a ‘temperature’
parameter 5 and related to the unitary symmetry groups (arising from Hermetian matrices, = 2),
the orthogonal groups (real orthogonal matrices, § = 1) and the symplectic groups (quaternion
matrices, 5 = 4) respectively. Much of the analysis is linked to the statistical mechanics of large
ensembles, but I do not delve into this at all. There is also a similarly with the central limit theorem.
Recall that this states that the probability distribution of a process which has many contributing sub-
processes tends to be Gaussian — also called normal — whatever the distributions of the sub-processes.
It happens that the statistics of the output from large random matrices tend to be insensitive of the
precise statistics of the a;; provided the symmetry is correct. This highly useful property, called



‘universality’, is probably the main reason why random matrices have such wide application as
models in physics and statistics. If you know that a system — physical, biological, financial, whatever
— is subject to universality, its large scale features and behaviour can be modelled quite accurately
without having to know the inner workings.

Another aspect of random matrices which has universality is the distribution in value of the
largest eigenvalues, |A\pqz|- This is known as the Tracy-Widom distribution after its two discoverers,
and has three versions, one for each of the symmetry types § = 1, 2 or 4, identified by Dyson.
Phenomena explained by the Tracy-Widom distribution were first described by biologists as they tried
to model the stability of large complex eco-systems in which the many components interact'. The
interactions can be represented by a matrix. It seemed that below a critical level of connectedness,
the system would be stable over time, but if the number or strength of connections increased further,
some species would multiply and dominate and others be wiped out. The critical point corresponds
to the peak in the Tracy-Widom probability distribution. Since then the Tracy-Widom distribution
has turned up in many seemingly unrelated places. It seems to be related to highly interacting,
cooperative phenomena, and the switch in behaviour as the peak of the probability distribution
curve is crossed is like a phase transformation from a phase with weak inter-element coupling to one
with strong.

The whole subject of random matrices is now very large and well studied, as has been
documented in several major books. One of the first, by Madan Mehta, is now in its third edition;
Mehta spent almost his whole academic career studying these mathematical objects. The fairly recent
thick volume entitled ‘The Oxford Handbook of Random Matrix Theory’, 2011, is a comprehensive
set of review articles?. However none of the books I have located is light reading and none is an easy
introduction for the amateur.

Before going into details let me give some results for random matrices which, in a simple visual
way, show some of their characteristic features. Figure 1 plots as short radial lines the eigenvalues
of a 32 x 32 symmetric matrix with real elements drawn from the Gaussian population N[0,1]; that
is, a normal distribution® with mean zero and standard deviation 1. They are fanned around a
circle such that each unit is represented by a 15° increase in angle. We expect the eigenvalues to be
roughly equally split between positive and negative ones, as shown here by those above and below the
horizontal reference line. Observe the similarity in position of these positive and negative eigenvalues,
almost mirrored in the horizontal axis. The spacing of adjacent marks is somewhat the same to the
right of the plot where values are closer to zero, but the last few high values to the left are further
apart, as if they had been constrained by some force near zero which relaxed at the two ends of the
sequence.

The two panels in Figure 2 let us see by eye how different the spacing is of the eigenvalues
of a random matrix from the spacing of random numbers. The left panel plots around a spiral the
512 eigenvalues of a 512 x 512 random matrix whose elements are all from N[0,1]. The right panel

! See for example Robert May, Nature, Vol 238, p413, 18 August 1972. Also the length of the longest increasing
sequence in a sample of N random numbers has the Tracy-Widom distribution

2 Mehta’s thick book Random Matrices, pub. Academic Press, had its third edition in 2004. ‘The Oxford Handbook
of Random Matrix Theory’, is edited by Akemann, Bail and Di Franceso. Two other notable books are ‘An introduction
to random matrices’ by Anderson, Guionnet and Zeitouni, CUP, 2010, and ‘Log-gases and random matrices’ by Peter
Forrester, Princeton Univ Press, 2010. The recent books are for the specialist. In one the Introduction explains that
the theory and application of random matrices has had input from so many disparate branches or maths and physics
that few people will have the width of knowledge and expertise to understand all aspects.

3 The probability density function (pdf) of a variable & drawn from Ny, o] is \/2;7 exp [—(;r -u)?/ (202)] .




%
rd
rd
A //
L
~ 1057 -
022 -
--11-13 -
w:h..
-~
\\

[

Figure 1: Plot of eigenvalues of a 32x32 symmetric matrix.

plots 512 random numbers from a uniform distribution over the same interval from —45 to +45. The
eigenvalues are more evenly spaced than the uniformly random numbers; the latter have bunching
in some places and wide gaps in others. There is not the ‘relaxation’ at the two ends that we saw
first in Figure 1. The excitation energies of heavy nuclear are known from experiment not to bunch
closely together. Another example of somewhat even spacing is seen in Figure 3, which plots the
first 700 complex zeros of the Riemann zeta function on the scale of 1 unit is 3°. Again there are no
great gaps and few very small gaps. You might believe that Figure 3 looks quite like the left panel of
Figure 2 (apart from at from its two ends). This is what Dyson pointed out to Montgomery; there
is a previously unsuspected statistical similarity between the eigenvalues of a large random matrix
and the non-trivial zeros of the zeta function. Some writers have even suggested that the zeros of
the zeta function and hence the prime numbers might actually be the eigenvalues of some infinite
symmetric matrix which is fundamental to nature — the cosmic matrix at the end of the Universe!
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Figure 2: Left panel: Eigenvalues of a 512x512 real symmetric matrix plotted around a spiral. Right:
512 numbers between —45 and +45 from a uniform distribution plotted similarly.
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Figure 3: The first 700 complex zeros of the Riemann zeta function plotted around a spiral.

2 Numerical survey of some Gaussian random matrices

This section gives an account of some of my numerical experiments with symmetric matrices whose
elements are all real and drawn from the Gaussian population N[0, 1]. The elements are said to be
‘i.i.d.’, meaning independent and identically distributed.



2.1 Method

Throughout this investigation my approach has been to examine small matrices and infer from them
the behaviour as NV, the number of rows and columns, become arbitrarily large.

My first step was to write a computer program to create random numbers with a normal
distribution. I used the standard uniform pseudo-random number generator provided within the
BBC Basic for Windows language (at www.rtrussell.co.uk) and map it to a normal distribution us-
ing the inverse error function*. The function RND(1) in BBC Basic for Windows supplies a 40-bit
floating point number in the range 0-0 to 1-0, exclusive of the end points. The cycle length is
233 1~ 8-59 x 10°, which is sufficient for the largest matrices which my home computer can handle.
The generator is given a new seed each time using the function RND(-N) where N is a new random
integer. The inverse error function of x is calculated to adequate accuracy by the following formula
given in Wikipedia:

L=In(1-22%), a=0-147, A=2/(ma)+L/2, B=+\/A2-Lla, erfinv(z)=vVB-A.

I created a significant number of square symmetric matrices with real elements drawn from the same
distribution with mean zero, standard deviation 1. The size IV of the matrices was scaled up in steps
of xv/2 up to 2! = 2048, supplemented by some intermediates plus the largest I could handle which
was 21125 = 2435 to the nearest integer. Thus N =2, 4, 6, 8, 16 to 1448, 2048 and 2435. Mostly
there were either 4 or 8 matrices of each size, with 95 in all. Each was entered into Mathematica
10 to calculate its eigenvalues. As expected from the symmetry of the normal distribution, these
too appeared roughly symmetrically distributed about zero as in Figure 1 Using a spreadsheet I
examined how the largest positive and negative eigenvalues vary with NV, and the spacing between
adjacent eigenvalues once placed in ascending order. I also determined the characteristic polynomial
of selected matrices.

Throughout this study, where early results have indicted fruitful or merely interesting lines
of enquiry, I have reported the early results as well as the more refined and later conclusions. Hence
the text contains several conjectured and hence provisional formulae.

2.2 The largest eigenvalues, with a partial explanation

+

Figure 4 shows how the largest positive and negative eigenvalues increase with N. Call these A} ...

and A, .. respectively. For the larger matrices the ratio of these is close to —1; for instance, for
one N = 2435 matrix A}, = 99378 and A, = -98-996. Their ratio has more scatter for the
smaller matrices, but the mean appears to be —1 as one would expect. To gain some idea of the
functional dependence on N, consider Figure 5. In this the absolute values of A\ . and A, have
been plotted for each matrix against size, as In|\},,.| versus log, N. The light green dotted curve is
Excel’s quartic trend line showing how the points tend to follow a straight line as IV increases. The
dark green solid straight line approximates the upper limit of these maximum eigenvalues. It has the
form ‘y =0-346x +0-742’. When allowance has been made for the log to base 2, this corresponds to

el § 2 1WN,  N>100. (1)

maxr

4 1 subsequently occasionally used the following recipe within Mathematica 10:
g = RandomVariate[NormalDistribution[0, 1], {N, N}]1;
A = ((g + Transpose[g]) - DiagonalMatrix[Diagonal[g]]*0.585786)*0.707107;
where N is the size of the matrix, 0-585786=2—\/§ and 0-707107 = 1/\/5
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Figure 4: The greatest positive and negative eigenvalues in each of 85 symmetric real matrices plotted
against size, as the logarithm of N to base 2.
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Figure 5: Log-log plot of absolute values of largest eigenvalues, |Apqz|, for each of 95 matrices against
size N, with two trend lines.

In words, the most positive and most negative eigenvalues have about the same magnitude and this
varies as vV N, N being the matrix dimension.

This relationship, assuming it continues for even larger NV, is so simple that we must suspect
a simple reason. In a previous article on www.mathstudio.co.uk entitled ‘Iterative numerical methods



for real eigenvalues and eigenvectors of matrices’ I have listed some properties of eigenvalues, including
three estimates for their magnitudes. In §2, item 14 of that article I cite the simple rule by Alfred
Brauer, 1946, which states that if R is the largest of the sums of absolute values of the elements along
the rows, and C' the largest sum taken down the columns, then for all eigenvalues A, || < min(R, C).
For a matrix with Gaussian distribution of elements, mean j = 0, variance o2 = 1, the absolute values
(according to Wikipedia) have a so-called folded normal distribution with mean

Y N s w0 B P
pp = 0\/;exp(T‘2) - uerf(\/@) = \/; = 0-798.

2
of = pP+o’—p; = 1-= = 0-363.
™

and variance

The largest sum of these absolute values along a row or column might therefore have a value not far
from 0-9N. Unfortunately for our purposes this linear dependence on N does not account for the
VN in Eq. 1, and A%, are grossly over-estimated.

Another set of bounds on eigenvalues has been given by Wolkowicz and Styan®. This too fails
to explain the v/N trend seen in numerical examples. For large N is merely places |\%,,.| between 1
and NN, which seems true but is not helpful. Other ideas seem necessary.

Here is my own explanation. Following Figure 1 I assume that the eigenvalues are sym-
metrically spread either side of zero; that is their values are +\;. Suppose also that the position
and spacing between adjacent eigenvalues are reckoned as multiples of a unit ¢q. If IV is even, its
characteristic polynomial will then be

(A% = (b19)?][N? = (b2q)?][\? - (b3q)?]....[N* - (b%q)z] , N/2 factors. (2)

If N is odd, Eq 2 will simply be multiplied by A since the central eigenvalue will be 0. The b count
the position of each pair of eigenvalues, these being at +b,q. We want the largest value of this.

I need to give some justification for the simplifications made in this approximate model.
Figures 1 and 4 show by eye that each positive eigenvalue has another with roughly negative its value.
If you take a small real symmetric matrix A and evaluate its characteristic polynomial algebraically,
a pattern can be seen in the values of some of the coefficients of A*. Here is a 5 x5 symmetric matrix

a b ¢ d e
b f g h j
c g m p r
d h p s t
e 3 r t u
and the coeflicients of some of its powers:
AV

ML (a+ fmas+u)g = ¢ Tr(A)

AN=2 —(bZ+02+d2+e2+g2+h2+j2+p2+r2+t2—af—am—fm—as—fs—ms—au—fu—mu—su)q2

MV (= f - d?f - €2 f + 2bcg — ag? + 2bdh — ah? + 2bej — aj? - bPm - d*m - *m +afm.....)q> .

5 ‘Bounds on eigenvalues using traces’ in Linear Algebra and its Applications, Vol 29, p 471-506, 1980.



In a random NJ[0,1] matrix of independent elements (apart from being symmetric) the expectation
value of each element is 0, and of a product of different elements is also 0. Hence the coefficient
of AV tends to zero. In the coefficient of V=2 the only non-zero terms are the squares of all 10
off-diagonal elements in the upper triangle. The average value of each of these squares is 02 = 1,
so their average sum is 10. For an N x N matrix this coefficient will on average be —N(N - 1)/2.
The coefficient of A3 has many 3-factor terms, but every one averages to zero. The coefficient of
AN=4 has even more 4-factor terms, many of which average to 0, but some do not; these are the 15
products of two squares of the form b?p?, c¢?h?, etc., each of which is on average equal to 1. The
characteristic polynomial of a 5 x 5 matrix is therefore on average

A% = 10A% + 150
and of an N x N matrix will start
AV - BEZDAN2 . pAN- (3)
5
where B is the mean sum of products like b%p?.

I carried out a similar procedure with matrices up to N = 11 and find that their average
characteristic polynomials Py (\) are

N=2: X -1 N=3: A -3\ (4)
N=4: M -6)2+3, N=5: A - 10\ + 15,
N=6: X0 —15)\* +45)% - 15, N=7: AT -21)\% + 105)\3 - 105,

N=8: X —28)\0 + 210\ - 420A% + 105,
N=9: X —36)\" + 378)\% — 1260A% + 945X,
N=10: A9 —45)% + 630A° - 3150A* + 4725A% - 945,
N=11: A = 5507 + 990A7 - 6930A° + 17325)% — 10395

I shall show in §5 below that these are cousins of the Hermite polynomials. In calculating the expected
values of the coefficients, I have used the independence of all the elements of Ay to conclude that
the expectation E() of the product of any z, y is E(zy) = E(x) E(y) where z, y represent any two
distinct matrix elements a;; or their powers. In the coefficients there were no cubes ag’j, only squares,
which average to 1, and single powers of the elements, which average to 0.

From samples of 20 N = 5 and 40 N = 6 matrices I found the average coefficients of the
characteristic polynomials to be as in Table 1. The agreement with theory is not too bad.

The roots of these mean polynomials are readily found and give the expectation values of
the eigenvalues for i.i.d. N[0,1] matrices with N =2 to 11:

N=2: X\ = £1-000,

: = +1-732,

= £2.334, +0-742,
= +2-857, +1:356, O,
+£3-324, £1-889, +0-617.
= +3-750, £2.367, +1-154, 0.
= +4.146, =+2-802, =1-637, £0-539.
= +4.513, +3-205, =+2-077, +1-023, O.

222222z
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k=5 k=5 k=6 k=6
Power | Average Coeff. Theory | Average Coeff. Theory
0 3-56 0 -6-71 -15
1 14-95 15 8-72 0
2 -1-55 0 31-61 45
3 -8-19 -10 -5-12 0
4 0-24 0 -13-00 -15
5 1 1 0-63
6 1 1

Table 1: Average coefficients of the characteristic polynomial of 5 x 5 and 6 x 6 symmetric matrices
with elements in N[0, 1]. Comparison of, respectively, 20 and 40 numerical values with theory.

N=10: X
N=11: M\

+4-859, +3-582, +2-484, +1-466, +0-485.
+5-188, +3-936, +2-865, +1-876, +0-929, 0.

From samples of 24 N =4, and the 20 N =5 and 40 N = 6 matrices featured in Table 1, I
found average ordered eigenvalues as follows:

N=4: X\ = -2.58, —-0-76, 0-73, 2-38,
N=5: X\ = -2.84, -1.45, -0-05, 1.38, 273,
N=6: X\ = -338, -1.92, -0-78, 0-52, 1-70, 3-23

all of which agree passably well with the theoretical polynomial roots. Taken together with the
average coefficients in Table 1, these average eigenvalues give some support to my argument.

Now we return to the characteristic polynomial in Eq 2. The coefficient of A\NV=2 is —(b% +
bg + bg + ..+ bQE) ¢®>. We want to match this to Eq 3 and to do so some values must be set on the

2
spacings brq. Let us set aside for the moment that the largest eigenvalues appear to ‘expand’ apart,
and treat all eigenvalues as equally spaced by 2¢ units. Then by =1, by =3, b3=5, ... by =2k -1, ...
by =N -1. The sum can be obtained in closed form as
2

N/2
> (2k-1)* = LN(N?-1).
k=1

This allows g to be found:

3

N(N-1) = .
N+1

N(N?-1)¢* from which ¢ =

% : ®

The mean spacing is 2q and the extreme eigenvalues are at £(N —1)qg= (N -1) ﬁ, which tends
to V3N as N — oo. This explains Figure 5 and Eq. 1.

In Figure 6 I have replotted all the data of Figure 5 and added the trend equation

N-1

(6)

B is v/3 in the lower curve which is my theoretical average largest eigenvalue, and 2-1 in the upper
which approximates an upper envelope to the largest eigenvalues. Note how both curves show the
downward trend seen in the data and sketched by the dashed green curve of Figure 5. Increasing 3

10
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Figure 6: Log-log plot of Figure 5 repeated with two trend lines using the relation of Eq 6. Lower
line f factor is v/3. Upper line f=2-1.

from 1-73 to 2-1 simulates the extreme eigenvalues being more widely spaced by a factor of about
1-2, to give the behaviour of Eq 1.

To add further numerical evidence to this analysis I have examined the coefficients in the
characteristic polynomials of 12 random NJ[0,1] 32 x 32 matrices. Their statistics are
Mean A%, : —10-377 and 10-629

Average spacing over all 32 eigenvalues : 0-678, to compare with 2¢q = 2\/(3/33) =0-603,

Average coefficient of \3°:  —-501-8, to compare with —496 by theory,

Average constant term : —2-096 x 10'7.
The actual average spacing is about 12% up on the theoretical because of the expanding spacing of
the extreme eigenvalues. The mean constant term also allows a second estimate of ¢, albeit not a
reliable one since I found a large variation in constant terms across the 12 sample matrices. The
constant term of the characteristic polynomial in Eq 2 equals the product of all the roots (iqu)Z.
For eigenvalues placed at by =1, bo =3, ... by =2k-1, ... b% = N -1, the product evaluates to

L e 3-6825 x 1034 ¢*?
at5151) 17 ¢

Setting this equal to the observed —2-096 x 10'7 gives 2¢ = 0- 58, a slightly lower estimate but still
showing consistency in the approach.

In summary, the square root dependence of Gaussian N|[0,1] matrices on the matrix size seems
to be due to two competing effects: the number of eigenvalues increasing as N and the separation of
them decreasing as 1/ V/N. To give a sense of scale to this, suppose that you were to write out the
matrix on a large square of paper or card so that each element was printed in small type in a square
cell with side length 2 cm. A 100 x 100 matrix would then require a 2 m square of paper — the size

11



of a double doorway. The eigenvalues, marked on a number line to the same scale, would stretch
84 cm end-to-end, and the spacing of adjacent eigenvalues along most of this line would be about 7
mm, with thickness of a pencil. A matrix with N a million (10°%) would cover a square 20 kilometres
by 20 kilometres — the distance between towns — but the eigenvalues would be marked along a line
only 84 m long — less than the length of a football field — and the space between eigenvalues would
be only 0-07 mm, the width of a human hair. Taking N to infinity would cause the eigenvalues to
become densely packed, with vanishing separation. We might consider, therefore, that even if the
zeros of the zeta function are the eigenvalues of some infinite primordial matrix, it cannot be of the
ii.d. NJ[0,1] type, since the Riemann zeros are not packed to infinite density.

To close this section let us use the listed expectation values of the largest eigenvalues above
to refine the estimate of 5, now regarding as a function of N, in Eq 6,
N -1

Wl = B

This can be rearranged to give a value for S(IN), and I find that a log-log plot of 3(N) against N
is close to a straight line. Taking the coefficients of this from the graph through the higher points
N =8 to 11, gives

B(N) ~ 1-64526 N°0308 N <200. (7)

This reaches the value 2 when N = 200, which seems to fit with the points plotted in Figure 6. As
working values for the time being, therefore, take 8 from Eq 7 up to NV =200 and g = 2 above. §6.2
will present a further refinement and also an alternative formula for the dependence of A, on .

2.3 Spacing of eigenvalues

We now move the focus from the largest eigenvalues to the spacings between any adjacent pair. Eq
1 implies that the average spacing falls at 1/ V/N because all N eigenvalues must fit into the interval
[A7aw> Nove] which is § 4-24/N. The way in which the extreme positive and negative eigenvalues
expand away from the others — or the innermost ones are squashed together — is seen in all matrices,
but clearest when N is large. This behaviour can be pictured in more than one way. First, Figure
7 plots the separation distance & between adjacent eigenvalues for an N = 2435 matrix with i.i.d.
elements from NJ[0, 1]. Second, for the same matrix I have counted the number of eigenvalues between
—100 and =99, —99 and -98, and so on in bins of unit width up to 99 to 100. These frequencies are
plotted at the midpoints —99-5, =98 -5 etc. in Figure 8. The curves drawn through the points in
Figures 7 and 8 are essentially reciprocals of each other. The red and green approximate bounding
curves in Figure 8 are both semi-ellipses. With suitable scaling these ellipses can be transformed
into circles and present us with an example of Wigner’s semi-circular asymptotic law for eigenvalues,
described in §4.

A third type of presentation is the frequency distribution of separation distances J between
adjacent eigenvalues. The left panel of Figure 9 gives a frequency plot for the N = 2435 matrix of
Figures 7 and 8. It records the number of gaps between adjacent eigenvalues (over the span from
Anaz ® —100 to A} .~ +100) lying within intervals of widths 0-01 units. Note how few gaps are
smaller than 0-02 or wider than 0-2. The smooth green curve has the form 61704 exp(-13062) which
is a Rayleigh distribution. The right panel in Figure 9 simulates what this distribution in gap widths
would have looked like if the 2435 eigenvalues were uniformly distributed over (-100,100). The two

panels are therefore quantitative versions of the two spiral plots in Figure 2.
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Figure 7: Separation of adjacent eigenvalues for one N = 2435 real symmetric matrix with elements
from NJ[0, 1]. Distance d between eigenvalues is plotted against the midway position of each pair.
Orange curve is the reciprocal of a semi-ellipse with semi-axes 100 and 15-5.

The green curve in the right panel of Figure 9 is a binomial function. To see how this arises
consider that in a uniform distribution over —h to +h the probability that any one point lies in an
interval of width w is w/2h, and the probability that the same point does not lie in this interval is
1 —w/2h. We have N independently, randomly chosen points and the probability that all N do not
lie in the one same interval — that is, that there is a gap of width w —is (1 — w/2h)". There are
N -1 gaps in all of which the widest possible in 2h. In our case N = 2435, h = 100 and w advances in
steps of 6 =0-01, so w=kd, k =1,2,3,...,2h/d. Introducing a normalising constant C, the number
of gaps of width w is

2h[s
C(1-w/2h)Y  where C > -ké/2n)N = N-1.
k=1

The sum evaluates to 7 - 72032 so C' = 315-3. For large N this binomial curve can be closely
approximated by a simple decaying exponential function by noting that

(1-0)Y = 1-Nv+ ZN(N -1)0* - FN(N - 1)(N -2)v° + ...
~ 1—N’U+%N2 2—%]\f3v3+.... = e Nv, U=%
provided v remains finite as N — oo. C' is approximated by C’ such that

o0 Nkd
C’[ (——)dk:N—l.
1/2 xp 2h

Thus C’ = 2434/7 - 7285 = 314 -94. When plotted, the exponential lies on top of the binomial curve
with difference 0-1% or less.

That the gaps between eigenvalues seem Rayleigh distributed was previously observed by
Wigner, and the so-called Wigner surmise is that eigenvalues of all such random matrices show this

13
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Figure 8: A frequency distribution: numbers of eigenvalues between n and n+ 1 from n = -N to +N

for the 2435 x 2435 matrix in Figure 7. The count is plotted against the midpoint of each unit-width
interval. Bounding curves are semi-ellipses with semi-minor axes 18-5 and 12-5.
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Figure 9: Frequency plots showing, left, number of gaps between eigenvalues of N = 2435 NJ[0,1] ma-
trix in intervals of width 0-01, and right, comparable graph if eigenvalues were uniformly distributed.

distribution of gaps. We might speculate how a Rayleigh distribution could come about. If z and
y are independent and identically distributed (i.i.d.) random numbers from the population N[0, o],
then the ‘length’ r = v/22 + 32 is Rayleigh distributed® with pdf r/o?exp(-r?/(202)). In a two-
dimensional kinetic theory of gases x and y would be components of molecular velocity. Suppose
that s is a vector quantity, Gaussian in magnitude, and uniformly distributed in direction in a plane.
Thus if all vectors of type s are plotted in 2 dimensions, those with magnitude between |s| and |s+Js|
will lie around a circular annulus of radius |s| and thickness ds. The number of planar vectors which
have magnitude between |s| and |s + ds| irrespective of direction is therefore 2w Asexp(-s2/(20%) ds
where A is a normalisation constant. This is the Rayleigh distribution. I have no model to say how

% If w is uniformly distributed over (0, 1), then r = 0v/=2Inu = oy/In(1/u?) is Rayleigh distributed.
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this might be analogous to the gaps between eigenvalues. I can only remark that the eigenvalues
are obtained by combining random matrix elements into the characteristic polynomial, and the
distribution of values in these combinations will tend to be Gaussian by the central limit theorem.
Some of these processes of combination may compound their components orthogonally rather than
by simple summation.

3 Some non-Gaussian distributions

In the previous section we have seen something of the behaviour of real symmetric matrices whose
elements come from the same normal (Gaussian) distribution NJ[0,1]. It is fair to ask whether the
V/N rate of increase in |\%,, .| and the corresponding decrease in spacing, with the expanding apart of
the larger eigenvalues, is confined to matrices with Gaussian distributed elements, or whether it is a
more common feature of symmetric matrices. This will illuminate the extent to which ‘universality’
appertains to various classes of random matrices. I have accordingly examined matrices with three
other distributions described below.

3.1 Uniform distributions

The uniform distribution over (-v/3, v/3) has mean 0 and variance 1. My first study with these has
been to create a number of matrices of different sizes from this distribution to see how the largest
eigenvalues, and the separation between pairs of eigenvalues, vary with N. Regarding the largest
eigenvalues a sample of 11 matrices with N from 64 to 2048 showed a clear relation |\%,, .| = 1-80N%%2.
This is close to the 2-1v/N of Eq 1 for Gaussian distribute matrices and can be explained by the
argument of §2.2 since the mean and variance are unchanged in moving to a uniform distribution.
However, I found two matrices which showed significant deviation from this expected behaviour. Of
the four matrices with NV = 256, three had |\},,.| close to 31 -5, but the fourth had values -37-2
and 39.0. There was extreme departure by one of the two matrices with N = 512; whilst one had
|A%qz| @t about 46 -5, the other had these largest eigenvalues : 444 -8, 27-5, =26 - 7. It happens that
the trace of this matrix is 443 -1, which can only have come about by some chance combination of
element values. This example reminds us that within any random sample there is the possibility of

sporadic large departures from average behaviour.

Regarding the spacing between elements, I have found the same random scatter around a

200 1 number .
180

160 1 L

140 .

100 -
804 4
80 -
40 1 »

50 I ., separation, d

0.05 01 015 02 0.25 03

Figure 10: Frequency plot of the gaps, d, between adjacent eigenvalues for one N = 2048 matrix with
elements in U[-v/3, v/3].
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‘bath-tub’ shaped curve previously seen with Gaussian matrices in Figure 7. Moreover, the Rayleigh
distribution seen in Figure 9 for Gaussian matric elements can be found in matrices with uniformly
distributed elements. As an example Figure 10 is a frequency plot of the gaps, §, between adjacent
eigenvalues for one N = 2048 matrix with elements drawn from U[-v/3, v/3]. The interval (bin) size
is 0-01 and the fitted curve is again a Rayleigh distribution, already seen in Figure 9. Its parameters
are n = 44208 exp(-1126%).

3.2 A forked distribution

I will call this the M distribution on account of its shape, made from two triangles as shown in Figure
11. This can be built from the uniform distribution on (0 < z < 2) by taking the positive or negative
square root in equal probability: y = £\/z. This function is almost the complement of a Gaussian
pdf.

2 P(x).dx

2 =02 0 X 2 2

Figure 11: An M-shaped probability density function constructed from two halves of a square, side
V2. p=0,0%=1.

Figure 12 shows the probability density obtained by counting the numbers of eigenvalues in
bins 1 unit wide, from five N = 1024 matrices with M-distributed elements. So even with such a
large departure from Gaussian, the eigenvalues of the M distribution show all the signs of behaving
similarly to the N[0, 1] matrices.

20 4 .

- 10

Tal
-80 60 -40 -20 0 20 40 60 80

Figure 12: Frequency distribution of eigenvalues of N = 1024 matrices with the M-distribution.
Combined results from sample of five matrices of element values.
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3.3 A distribution from continued fractions

Several years ago I wrote a monograph on continued fractions, available on ww.mathstudio.co.uk. A
continued fraction such as
1

b+ —1
c+ _d+i

a+ , a,b,c,d,... integers,

is written as {a : b,¢,d,...} where the integers in the sequence are called the partial quotients of
the fraction. For rational numbers this is a finite sequence, and for square roots it is a recurring
palindromic sequence; for example

V31 = {5:1,1,3,5,3,1,1,10}

where the underlined sequence recurs ad infinitum. For other real numbers in R the sequence is
unending and random, with a preponderance of 1s and 2s, fewer 3s and 4s, and a sparse smattering
of higher integers, though there is no upper limit. As an example

m ={3:7151,292 1,1,1,2,1,3,1,14,2,1,1,2,2,2,2, 1,84, 2,1, 1, 15, 3, 13
1, ,2,6,6,99,1,2,2,6,3,5,1,1,6,8,1,7,1,2,3,7,1,2,1,1,12, ,1,1,3,1, 1,8, 1, 1,
2,1,6,1,1,5,2,2, 3, 1,2 4,4, 16, 1, 161, 45, 1,22, 1,2, 2, 1,4, 1,2,24, 1,2, 1,3, 1,2, 1, 1
10,2,5,4,1,2,2,8,1,5,2,2,26,1,4,1,1,8,2,42,2,1,7,3,3,1,1,7,2,4,9,7,2,3,1,57,1, ... } .

The distribution function of these random partial quotients is given in section §16 of my article.
It was derived first by the great Friedrich Gauss and elaborated by the Russian mathematician
Alexander Khinchin who did much to develop probability theory in the 1920s. Gauss found that the
probability that any partial quotient aj in the unending tail of the sequence has the value v tends
asymptotically to

1 1 1
P(ak:v):log2(1+m) = mln(1+m) k — oo. (8)

Clearly this distribution is far removed from a normal one. All the possible values are positive
integers. Moreover, it does not have an arithmetic mean nor a finite variance nor higher moments

because the sum
qu Inl1+—— 1
v(v +2)

does not converge for any k > 1. It is possible, to calculate other averages such as the geometric and
harmonic means. The geometric mean G of a set of N numbers {vy,v1,...v1,02,02,...02,03,... Up},
in which v; occurs p; times, vy occurs po times, etc. is

1
Dp1 D2 . P3 —
(vl s v3....vp’“)N, pL+pa+--+p-=N .

In the limit N — oo
1 & 1
1 —E | — ) =0- 4
ng = n2 & Inv n( (v+2)) 0-987849

from which G = 2-6854520... ., known as Khinchin’s constant. It states the remarkable tendency of
the geometric mean of almost all the partial quotients of ‘almost all’ real numbers to converge on
this value. The harmonic mean H is similarly obtained from the formula

LMY PR L T
fv v(v+2) In2

1 1
H  In2 f

||M8
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from which H =1-7454. H is less than the geometric mean.

I have generated a number of symmetric matrices with elements drawn from the Gauss-
Khinchin distribution, independent and identically distributed. Their eigenvalues vary wildly because
they are dominated by sporadic large values of some matrix elements.

Since 1 is the most common element value, one limiting form for these matrices is that in
which all elements equal 1. Such an N x N matrix has characteristic polynomial AN"'(\ = N') and
hence one eigenvalue equal to N and the rest all zero. For each diagonal element which is changed
from 1, the multiplicity of the A = 0 eigenvalue decreases by 1, so if N — 1 diagonal elements are
changed, no eigenvalue will be zero and all will in general be different. The off-diagonal elements
have a less strong action towards decreasing the number of zero eigenvalues, but as a guide between
2N and 3N off diagonal elements must not equal 1 for a zero eigenvalue to be avoided, the diagonal
ones all remaining at 1.

Another limiting form is that in which all off-diagonal elements are very small relative to
those on the diagonal. The matrix then looks almost like a diagonalised matrix, whose eigenvalues
are necessarily close to the diagonal elements themselves. The behaviour is not so simple when the
large elements are an off-diagonal pair (the matrix being symmetric).

I conclude that when the matrix elements come from the Gauss-Khinchin distribution, the
eigenvalues do not follow the pattern shown by the other matrices studies, which have an arithmetic
mean and variance 1. The conclusion of this whole section is that the eigenvalues of a real symmetric
random matrix will be statistically similar to one drawn from N0, 1] only provided i) the mean
of the elements is 0, ii) their variance is 1, ii) all higher moments are finite. The Gauss-Khinchin
distribution fails these criteria.

4 Wigner’s semicircle theorem

This theorem was first proved by Wigner in 1956. It states essentially that the limiting form, N — oo,
of the probability density function (pdf) of eigenvalues from an i.i.d. random matrix with mean zero,
variance 1 and finite higher moments, suitably normalised, is

1
P(x)dz = P V4 -2 dz, |\l <2. (9a)
T

He chose his semi-circle to have radius 2 units. The units are normalised by dividing the eigenvalues
by v/ N in recognition of Eq 2, that the largest eigenvalues grow as vV N: z = A/[v/N. In terms of A

P(\) = %LN\MN—A?, IA| < 2V/N. (9b)

You may care to look back at Figures 7 and 8 for one N = 2435 NJ[0,1] matrix and compare the
empirically fitted curves with these formulae. 2v/N=98-7 is to be compared with 100 for the half
width, and \/N/W =15-7 with 15-5 in Figure 7 for the central level.

Wigner proved his law using the moments of this distribution. Recall that the moments of a
variable x which has a probability density P(x)dz are defined by

b
M, = f 2" P(x) dx

18



where a and b are the extreme values that x can take. The moments are the expectation values
of the respective powers of x and give increasing detail about the position, size and shape of the
distribution. The full set of moments in almost all cases defines the distribution uniquely. In the
derivation below moments are approached from two opposite ends of the problem and meet in the
middle; I show that the moments arising from the distribution of matrix elements values approach the
moments of the semi-circle distribution as N — oo, and so the two must be asymptotically identical.
Technically they are said to converge to each other ‘in expectation’ which is a rather weak form of
converging ‘in probability’.

4.1 Catalan numbers

Coming in one direction at the problem, we assume for the time being that the semi-circle distribution
is correct and calculate the sequence of its moments. Since the semi-circle is symmetric about z = 0,
it is clear that the mean, M;, and all higher odd moments must be zero. The even moments are
therefore central moments, of which Ms is the variance. Higher even moments are given by

1 2
My, = 2-] NE— 2 dr,  k=1,2,3,......
s -2

You can use a computer integration program like Mathematica to evaluate the first few of these to
find
MQ = 1, M4 = 2, M6 = 5, Mg = 14, Ml(] = 427 M12 =132 (10&)

and then use the On-Line Encyclopaedia of Integer Sequences (oeis.org) to see that these are the
Catalan numbers defined by
(2k)!

Cr TR (k+ 1)

SO Mgk = Ck . (10b)

If you wish to press on with evaluating the integrals by hand, first make the substitution x = 2y to

obtain 5 .
= /1 (2y)* V1 -y2 dy,
ﬂ' —

then make the further change of variable, y = sin#, to obtain

22k+1 /2
My, = / sin?* 9 cos? 0 df .

m /2

From here we integrate by parts

/abu.dv = uwol - /abv.du, u=u(f), v=v(0),
using the particular division of the integrand
u = sin?*710 cos?, dv = sinfdo
du = (2k-1)sin?*720 cos®>0df - 2sin®* 6 cos 0 db, v=-cosf.
The product uv is zero at both limits so contributes nothing, while
—v.du = (2k-1)sin?*72 cos? 0 (1 -sin?0) df - 2sin®* 0 cos®0db .

There are signs of a recursion relation here so we note that

22k—1

w[2
f sin?*20 cos?0do .

Moy = /2
v
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Then Mgk = 4(2k - 1)M2k_2 - (2k' + 1)M2k .

2(2k - 1)

My, = ————2
2k k+1

Moo (10¢)

which generates the Catalan numbers at Eq 9 above.

The Catalan numbers, named after the 19th century Belgian mathematician Eugene Catalan,

feature widely in combinatorics. Essentially Cj counts the number of matched pairs which can be
made from a two equal set of objects, k objects in each set, when order is important. Some instances
are illustrated in Figure 13. Others include

1.

the number of ways k left brackets and k right brackets can be placed so that valid pairs of
open and closed brackets result. For k = 2 there are the two pairs {} {} and {{ }}. For k=3
there are five:

{(HHE Wty THUY, s

. the brackets above can be replaced by letters or numerals to form a Dyck word (after Walther

von Dyck) in which, at any position along the word, the number of ‘b’s does not exceed the
numbers of ‘a’s. Thus the above list for k = 3 translates to
ababab, aabbab, abaabb |, aababb, aaabbb .

. the number of ways to draw a peaked ‘mountain range’ from k diagonal up strokes / and k

down strokes \ so that no line dips below the starting point at sea level (Figures 13 and 14),

. the number of ways to dissect a convex polygon with k sides into triangles by non-crossing cuts

between vertices,

. the number of ways 2k people sitting in a circle can shake hands with each other pairwise,

. in graph theory, the number of ordered rooted trees which have k edges, k + 1 vertices (Figure

13, right). A tree is a graph with no cycles. Ordered means that the vertices are labelled 1, 2,
3, ... ; this labelling means that trees that would otherwise be equivalent under some symmetry
operation remain distinct. Rooted means that one external vertex is chosen as being ‘in the
ground’ and acts as a starting point for growing the tree. The pairing is of the paths one way
then back along each branch, i.e. edge of the graph.

. the number of ways k applications of a binary operator, such as +, can be associated. This is

illustrated by using k pairs of brackets to show how k + 1 quantities can be added in different
stages. For k = 3 the quantity a + b+ ¢ + d can be built up in 5 ways using three + operations:

(((a+b)+c)+d), ((a+b)+(c+d)), ((a+(b+c))+d), (a+((b+c)+d)), (a+(b+)c+d))).

. in graph theory, the number of ‘full binary trees’ with k internal vertices. A full binary tree is

a rooted tree in which every internal vertex has exactly 2 children. It has k + 1 leaves (out to
the end vertices), 2k edges and k + 1 external vertices, making 2k + 1 vertices in all.

There are other interesting and well illustrated examples on the internet. Figure 14 illustrates

the 2, 5, and 14 matched pairing of 2, 3 and 4 pairs of up and down pen strokes drawing a mountain
range. Notice how the shapes from the smaller pairings form building blocks within the larger shapes
towards the bottom of the diagram. This is the geometric basis of recursion.
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Figure 13: Five ways to represent a set of 6 pairings. U stands for Up, D for Down. There are Cg = 132
possible matched pairings of 646 items. In the tree graph each edge defines the there-and-back in a
walk around the tree.

Out of passing interest, I will also point out an algorithm to translate the bracketing at item
7 with the full binary trees at item 8. Place the quantities z, y which are at the innermost pairing(s)
at two vertices (labelled x, y) at a level furthest from the root. Their combination under + is a vertex
at the next level near the root, such that they form two leaves from that vertex. Label this parent
vertex (z +y). Continue in this way to the root vertex, with corresponds with the total expression.
As examples the binary trees representing (((a+b)+c¢) +d) and ((a+b) + (c+d)) are shown in Figure
15.

2 pairs YV NVAN
 pairs A AN N\
NN NSNS\ SN SN
VAVAVAN /\ /\
NN/ NEVAVAVARNEEVARVAVAN
VAVaN VAVAN /N / /\
VAAVNERV VANV AVANERV VAV
VAVAY A\ /\
/N N/ /" N\
//\\\ / N N/ N N/ \
/ A\ /\ /\ 4 pairs

/N/ N\ /NN

Figure 14: Mountain-style representations of the matched pairings of 242, 3+3 and 4+4 items,
illustrating Catalan numbers Cy =2, C3 =5, Cy = 14.

I remarked above that the eigenvalue parameter used in the semi-circle law is normalised by
dividing A by v N. In terms of the actual eigenvalues the moments are

My =N, M, =2N?, Mg =5N3, Mg = 14N*, Mg =42N°, My, = CiLN*. (11)
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(a+b) ¢ (a+b) (c+d)
((a+b)+c) d ((a+b) + (c+d))

(((a+b)+c)+d)

Figure 15: Binary trees representing two associations of a, b, ¢, d under +.

4.2 Moments of an equally-spaced distribution

In the frequency plots of Figures 8 and 12 we have pictured the eigenvalues as being points along the
number line from A, to A}, .. and counted the number within each short interval of length J\. Take
A to be a variable pos1t10n on the number line and let v(A\)d\ be the number of eigenvalues in length
O\ found in a numerical experiment with a large random matrix. The total number of eigenvalues
is N so v(\).0A\/N is their probability density for this matrix, usually called the ‘empirical spectral

density’ or ESD of the eigenvalues. Its k' moment is

A;Lnaw A
M, = / A gy
. N

mazx

This can be written in a better way for our purposes by seeing that as d A becomes very short, less
than the minimum distance between adjacent eigenvalues, it will contain either no eigenvalue or
just the one, if there happens to be one close to position A;. (I assume that there are no multiple
eigenvalues.) The integral over A degenerates to a sum over the A;j, for each of which v(\;) = 1. The
k" moment is therefore

My, = A;?. (12)

”MZ

1
N §

Before attempting to calculate the expectation value of these for a random matrix, let us pause
briefly to use Eq 12 to calculate the moments of the artificial approximate distribution of eigenvalues
postulated in §2.2. In this the eigenvalues are equally spaced with separation distance 2q where ¢ is
B/v/N +1, and $ has been identified as somewhere between 2-1 and /3 (see Egs 5 and 6). We do
not expect the moments to equal those of the semi-circle distribution since the uniform, comb-like
distribution does not have the increasingly wider spacings of the outermost eigenvalues. However,
there may be similarities which could prove helpful guides to random matrices. In the uniform
distribution the N eigenvalues are at A values of —(N -1)q, —=(N-3)q, .... —q, ¢, 3¢, 5q, .... (N-1)q.
The moments are

2 & 2% B
Moy = — A A= (25 -1)q, - .
2k Z i=Qi-De 4=
As an example,
_ 5 3 2 . B e
My = —— (3N°-3N*“-7N +7) which tends to —(N“-2N-...) as N - oo.
15(N +1) 5
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In general My tends to a polynomial of degree k as
2k

2k +1

My, — N* — O(N*1). (13)

The limiting values of the first few moments are :

62 64 /86 8
My —> =N, My~ EN2, Mg — 7N?’, Mg — ?N‘*.

This sequence has the N* dependence seen in Eq 11. A log-log plot of Jo, = 82%/(2k + 1) against
the Catalan numbers C gives a fairly straight line indicating a relationship approximately of the
form Jo = ACkb. I find that 8 =1-9186 makes b =1 and so gives Joi directly proportional to Cy:
Jop ~ 1-3Cy. It is surprising that this equally-spaced distribution and the semi-circle distributions
have moments sufficiently similar that those of one are roughly equal to those of the other scaled up
by about 1- 3.

4.3 Trace of matrix powers

We now return to the main task of calculating the moments of a symmetric random matrix with
mean zero, unit variance and finite higher moments, and approach the problem from the opposite
direction from §4.2. We need expressions for the sequence of expectation values of moments of the
eigenvalues to compare with the moments of the semi-circle at Eq 11. The first step is to use the
fact that for any N x N matrix A raised to a power k

N
Tr(A*) = YAk (14)
j=1

We therefore replace the sum over eigenvalues in Eq 12 by the trace of a power of the matrix. The
proof of Eq 14 is by induction on k and runs as follows. For any matrix A¢ = A¢ by definition of an
eigenvalue and its eigenvectors. Suppose that for k > 1 that A¥¢ = A¥¢. Then

Ak+1¢ — AkA¢ - Ak)\(b - )\Akqﬁ - Ak+1¢.

So A and A* share the same eigenvectors, and the eigenvalues of A* are those of A raised to the k"
power. Now use the fact that the trace of a matrix is the sum of its eigenvalues to obtain Eq 14.

The challenge, therefore, has now moved to finding the expectation value of TT‘(Ak). The
argument here has similarities with that of §2.3 since if k is odd, all the terms which contribute to
the trace have an odd number of factors such as --~-6L11a1§ + algam.... Since all elements of A are
assumed independent, with no correlation between any two, E(zy) = E(z) E(y) where z, y represent
any distinct two elements a;; or their powers. When the expectation value of these products is taken,
every term which has a factor a;; to a single power will average to zero. What about the higher odd
powers such as ai]‘?’ which occur in all odd moments? Clearly these will also tend to be distributed
symmetrically about zero so will all average to zero. We may conclude that all odd moments tend
to zero on average as N — oo.

So we now tackle the problem of determining the expectation values of Tr(A%*), k=1,2,3, ...
as N — oo. In the accounts of this proof which I have read in the literature, mathematicians move
forwards quickly to equate the limiting expectation value with the number of trees graphs which
have k edges, and hence with the Catalan numbers and the moments of the semi-circle distribution.
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Personally I do no find this at all obvious, so I have examined the matter in small stages. To start,
I examined the types of term which are summed in the trace and how many of each there are.

If we start with a general N x N matrix A and square it, each element of A2 is a sum of
N terms, each of which is a product of 2 factors. Denote this by */N(2). The diagonal has N such
elements so Tr(A?) =% N2(2), i.e. the sum of N? terms each of which is the product of two elements
of A. Now square A2. Each element of A% is a sum of N terms, each of which has N? sub-terms, each
sub-term being the product of 4 factors. So a representative element of A% has structure *N3(4).
The diagonal has N such elements so Tr(A*) =% N*(4). Continuing in this shows see that Tr(A%*)
is the sum of N2* terms, each of which is the product of 2k factors; that is, the degree of each term
is 2k. Its structure is *N2¥(2k).

As an example, here is a selection of terms from Tr(A®) where A is the general algebraic
6 x 6 symmetric matrix, so N =6, 2k =8:

a?l +8 a?l a%2 +20 a‘fl ailQ +16 a%l a?Q +2 Q?Q +8 a(fl a%3
+40 a‘fl a%2 afg +48 a%l ailQ a%g +8 a(fg a%3 +20 a‘fl ail3 + ..
..... + 96 a12 413 ai afﬁ ag4 a34 + 32 a12a13 af5 CL%G ag4 34 + 16 a12 a13 ail6 a4 a34
+16 a3 a12 a13 Az g aza + 64 a11 Ay a13 a2 g4 a3
+96 al] a12 a13 ah a92 24 A34 + 16 a%l a12 a16 A23 0%4 asg.....

In all there are 6% = 1,679,616 underlying terms, each the product of 8 factors. Even though the
symmetry means that equal terms a;;, aj; will be collected together, the sum of the coefficients
remains at 1,679,616. The expectation value E( ) of the trace is the sum of the expectation values of
its N2* terms. Again, since the elements a;; are drawn from a population (not necessarily Gaussian)
symmetrical about the mean 0, E(a;;) = E(a?j) = E(a?j) = .... = 0. This eliminates a vast numbers
of terms from E(Tr(A2*)), leaving only those which are products of even powers to contribute.

That is perhaps all I can say at present about the general large random symmetric matrix.
I will now look at small matrices for which explicit values can be calculated numerically and see
if I can discern patterns which point to the behaviour as N becomes large. I have used software
to calculate algebraically the trace of powers of symmetric matrices up to N = 7 and examined the
number of terms of each type. We can expect the types of term in the trace of A?* to be related
to the partitions of the index 2k. Thus, in terms of powers of elements, Tr(A?) for N = 3 has the
partitions

4, 242, 24141, 1+1+141, but not 341.

To be clear, ‘2+1+1’ means terms of the form a?j gl Amn- The index 6 in Tr(A%) for N = 3 has 11
partitions and 9 of these occur:

6, 4+2, 4+1+1, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1.

The missing ones are 541, 3+3, meaning there are no terms of the forms a?j agy or ag’j azl. The only

partitions which can contribute to the expectation value are ones entirely with even numbers, 6, 4+2
and 24242, and there are 9, 126 and 132 of these respectively. Table 2 lists the total numbers of
terms which have no factors with odd index; these are the ones which contribute to E(Tr(A%")).
The upper panel gives the absolute number and the lower panel the percentage.

It would be fortunate to extrapolate a pattern in Table 2 to indefinitely large N. The
following patterns do occur:
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No. of contributing (even index) terms
N\2k| 2 4 6 8 10 12 14

2 4 12 40 144 544 2112 8320
3 9 45 267 1785 12999
4 16 112 952 9184
5 25 225 2485 31185
6 36 396 5376 82896
7 49 637 10255
Percentage contributing
2 100 75 63 56 53 52 51
3 100 56 37 27 22
4 100 44 23 14
5 100 36 16 8
6 100 31 12 5
7 100 27 9

Table 2: Number (top panel) and percentage (lower) of terms in the trace of A% an NxN symmetric
[0, 1] random matrix, which contribute to its expectation value.

e the total number of terms is N%*, and the sum of indices in each term is 2k,

e for N =2 the number of contributing terms is 2¥(2*=! + 1). The fraction of contributing terms

S |
Is 5+ 5%

e for 2k = 2 the number of contributing terms is N2,

e for 2k = 4 the number of contributing terms is 2N3 — N2. This is a polynomial of the form
found for the equally spaced distribution at Eq 13. As a fraction of the total this is 2%;1 which
tends to zero like 2/N as N — oo.

Prompted by Eq 13 we may suspect that the other columns also fit to polynomials of degree k. It
has been easy to find that for 2k = 6 the polynomial

5N* —5N3 - N? + 2N (15a)

is an exact fit to the numbers of contributing terms. There is one integer too few in the 2k = 8
column to fit a unique degree 5 polynomial, but, suspecting that the coefficient of N° is the Catalan
number 14, I find a 4th order polynomial can be fitted exactly to the remainders. Thus the number
of contributing terms is

14N° —19N* — 10N + 24N? - 8N . (15b)

These values, of course, are not the 2k moments but just the number of contributing terms. Nev-
ertheless it is encouraging to see that the leading terms for 2k = 2, 4, 6, 8 are respectively 1N?2, 2N3,
5N* and 14N°. When divided by N as required by Eq 12, these would be the limiting forms of the
moments on the semi-circle distribution. This fact suggests both that the semi-circle distribution
is indeed the limiting form and that it is the number of contributing terms which has the largest
influence on the moments.

To quantify the actual moments we need the expectation values of powers of a;; and for this
we need to specify their distribution. Here are the calculations for a Gaussian distribution, and a
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uniform distribution, both with variance 1.

Gaussian N[0, 1]: E(2?) = 1, by definition of the variance.
1 o 2
k=2: E(z* :—f 2te™ Pdy = 3, 16
@ - =/ (16)
1 o0 2
k=3: E(z° =—f 2% P dy = 15,
(z°) el
1 0o
k=4: E(«®) = —/ 282 dx = 105.
27 J-o0
The sequence continues with rapidly increasing values: 1, 3, 15, 105, 945, 10395, 135135, 2027025,
(2k-1)!

C T D) These are the number of ways to choose k disjoint pairs of items from 2k items.
Uniform UJ[0, 1]:

1 V3 9
k=2: E(z') = —= Ydr = = 1
@) = g [t = g (17)

k=3: E(z°)

1 Ve 27
—f r’dr = —.
2/3 J-v3 7

This sequence does not grow so quickly because the maximum value of |z| is capped at v/3: 1, %, 2—77,
Q. 243 729 3"
> T1 0 1370ttty 2k

I have examined the number of terms of each partition type for the matrices referenced
in Table 2 and, by weighting them according to the moments just calculated, arrived at values
for E(Tr(A?%)). For example, the theoretical value of E(Tr(A*)) is 9 x 3 + 36 = 63. I attempted
comparison with numerical samples by using Mathematica to calculate algebraically Tr(A%) for A
a 3 x 3 symmetric matrix, then substituting 100 sets of random numbers from N[0, 1] for the six
independent coefficients a1, ai2 = as91, etc. I hence obtained mean values over the 100 samples of
each of the different types of term in the trace. There are four types of term as listed in Table 3.
Here a, b, ¢, d represent any of the elements a;;,1 <7 <4, 1< j <4. Observe that there are none
of type a®b. The agreement between theory and experiment is not particularly good because the
variance of powers of the elements is high. For instance a,] varied from almost 0 to 52, the latter
due to a;; being 268 — rare but possible in a normal distribution.

Type No. of terms theory mean exptl. mean sum

a* 9 3 3.67 33.04
a’b? 36 1 1.46 52.46
a?be 12 0 -0.03 -0.38
abed 24 0 0.08 1.85
Total 81 86.97

Table 3: Summary of types of term in trace of 4th moment of a 3 x 3 symmetric matrix with elements
in N[0, 1]. The theoretical value of E(Tr(A%)) is 9 x 3 + 36 = 63.

Another example is the theoretical E(Tr(A%)) for elements from N[0, 1]:

Ox15+126x3x1+132x1x1x1 = 135+378+132 = 645.
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If this had been the uniform distribution U[0, 1] of aij, the result would have been
9x 2L +126x 3 +132 = 34-7+226-8+132 = 393-5.

The weightings given to the terms from the higher powers of a;; are large and mean that there is
no simple relation between the number of even-index terms in the trace and the value of the trace.
Take the case of a 4 x 4 matrix raised to its 8th power. Table 4 lists the number of each type of term
(according to the indices of its factors) and the contribution each makes to the trace.

Partition Number Weight Contribution
8 16 105 1680
6-+2 480 15 7200
4+4 384 9 3456
44242 4248 3 12744
2424242 4096 1 4096
some odd powers 56312 0 0
Total 65536 29176

Table 4: The number of various type of term in Tr(A%) for A a 4 x 4 symmetric matrix, and their
contributions to the expectation value of the trace.

The remaining question is: in the general case of large /N, how many are there of these various
contributing types of term? Knowing the weighting of each, we would ideally like to decide on the
dominant types and hence estimate the limiting values of E(Tr(A?*)) for all k as N — oo. Terms
which grow as powers of N will dominate over terms which depend just on k.

Define ratios a) 7, of mean value of trace to number of contributing terms, and b) 7, of mean

value of trace to the first term in the polynomial, C;; N**1. Values are listed together with the total
value of the trace in Table 5. I find that for each value of 2k the ratio r; falls closely as

) (18)

Q
where a and ¢ are as given below. The values in italics are extrapolated and hence approximate.
Clearly all these formulae tend to 1 as N — oo, meaning that the larger weightings of the higher
powers of a;; have a diminishing effect relative to the increasing number of terms. In this sense the
value of Tr(A%) tends to the number of terms in Tr(A%¥) as N — oo. By retaining only the leading
term in the polynomial for the number of terns (meaning that we do not subtract a term in N k),
we compensate in a loose way for the higher weightings of the factors in afj and higher powers. For
this reason the ratios r; =E(Tr(A%*))/(C,.N**1) in the lower panel of Table 5 converge more quickly
than those in the middle one. For matrix elements drawn from a uniform distribution, for which the
weightings are all smaller, this convergence can be expected to be quicker.

Let us take stock of where we are. We have reached a position at which the numerical evidence
from small matrices points to the number of contributing terms in the trace Tr(AQk) being given by a
polynomial whose leading term is C;, N**! where Cj, is a Catalan number. The contributing terms are
those which do not statistically average to zero, and they all are composed only of factors which have

an even power. Fach factor of the form %32 is weighted 1, and higher powers have a higher weighting

27



N\ 2k | 2 4 6 8 10 12 14

Trace value

2| 4 20 156 1656 22320 365760 7071120
31 9 63 645 8601 141975
4116 144 1824 29136
5125 275 4155 77385
6 | 36 468 8220 175080
7149 735 14721
ratio r¢
2 1 1.667 3.900 11.500 41.03 173.18 849.89
3 1 1.400 2.416 4.818 10.92
4] 1 1.286 1.916 3.172
5 1 1.222 1.672 2.481
6 1 1.182 1.529 2.112
71 1 1.154
ratio ry
2 1 1.250 1.950 3.696 8.30 21.65 64.39
3 1 1.167 1.593 2.528 4.64
4 1 1.125 1.425 2.032
5 1 1.100 1.330 1.769
6 1 1.083 1.269 1.608
71 1 1.071 1.226

Table 5: Upper panel: mean values of traces of random symmetric matrices from N[0, 1], including
weighting of terms. Middle panel: ratios r; of mean value of trace to number of contributing terms.
Lower panel: ratio ry of mean value of trace to the first term in the polynomial, C}); N kel

2k |2 4 6 8 10 12 14
a |0 1.029 2832 51451 798  11.6 16
£ 0.015 0.0603 0.0772 0.0866

Table 6: Parameters in the ratio r; in Eq 18.

depending on the precise statistics of the distribution from which the a;; are drawn. We found
that as IV increases, the number of contributing terms in the trace becomes an increasingly closer
approximation to the value of the expectation value of that trace, as Eq 15a, b. This approximation
is equivalent to replacing the true weighting of the higher powers by 1. From Eq 12, dividing the
trace by N gives the k' moment in terms of the actual eigenvalues, and dividing by N* gives the
moments in terms of the normalised eigenvectors A\/v/N as used by Wigner in his semi-circle law.

The outstanding point we have yet to explain is why the Catalan numbers appear as coeffi-
cients of the leading terms in the polynomials, as at Eq 15. A subsidiary point is why these leading
terms over-estimate the number of contributing terms — in other words, why the second terms in the
polynomials appear to be —~O(N k‘l). The Catalan numbers essentially count the number of ways
two equal sets of objects can be paired. The pairings in the trace are the pairing of a;; with a;;
(which are equal by symmetry of the matrix) to give the even power ai]?.

It is not difficult to see why the numbers of contributing terms for 2k = 2 and 2k = 4 are
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N? and 2N3 - N? respectively. I illustrate this for N = 4 and record only the indicies, so that ij
represents the element a;;. The square of Ay is

$1551 ;1552 £,;15.53 ;1554
%2591 £,24.j2 ¥,24.43 ¥,;2j.j4
23751 %;35.52 £,3j.j3 ;3.4
245,51 $45.52 %4553 %4554

A42 =

When the matrix is symmetric, ij = ji and this pairing of elements across the matrix diagonal
produces elements raised to even powers. Clearly in the above matrix this can occur only for elements
down its diagonal. In the top row X;15.71 contributes a sum of four squares, 112 +122 + 132 + 142
to the trace. There are thus 4 rows each contributing 4 terms, giving 42, or N? contributing terms.
The argument readily generalises to higher N.

For the fourth power, A44, the top row of the matrix makes the following contribution to the
trace:

(SR1hh1)(5515.51) + (Sp1h.h2) (5;24.51) + (Sp1h.h3)(5;34.51) + (Sp1h.h4) (5;45.51).

with the other three rows contributing similar terms. The first term above, when expanded, has 16
sub-terms involving 2™ powers, while the other three terms have only 4 each. For example, the third
term above is

(11.13 +12.23 + 13.33 + 14.43)(31.11 + 32.21 + 33.31 + 34.41)

of which only 112.132, 122.232, 132.33? and 142.34%2 — all products between corresponding terms
— produce square factors. The number of contributing terms in Tr(A44) is therefore 16+4+4+4
from row 1, 4+16+4+4 from row 2, 4+4+16+4 from row 3 and 4+4+4+16 from the bottom row.
Generalising this to other N, the total number of contributing terms is (N2+[N-1]N)N = 2N3- N2,
We are interested in how the Catalan coefficient 2 arises, and note that there are two types of
contributing terms, one arising from the diagonal element of A ]\?k and the other from the off-diagonal
elements. Unfortunately the sixth moment, 2k = 6 does not furnish so easy a rationale for the Catalan
number C3 = 5. We would be cheerful if we could find 5 types of combination each producing N3 - N?
contributing terms in each of the N rows to explain the polynomial 5N*-5N3 - N?+2N. T examined
the matrix with IV = 3 in detail but found no obvious partition of the 89 contributing terms into 5
sets; perhaps 3 is too small a matrix for this partition to show up.

4.4 Tree graphs and paired matrix elements

Each of the terms in the trace, such as a11 a1 a13 a%4 a2 a94 a4 in the example of TT(AS) listed in
§4.3, can be represented by a graph. The procedure is that used to draw the tree graph in Figure 13,
by letting each ¢ or j in the index of a;; label a vertex, and letting ij be the edge between vertices
1 and j. By symmetry of the matrix, a squared factor such as aﬁ = a14a41 is a path there and back
between vertices 1 and 4. Elements a;; on the diagonal correspond to a loop at vertex 7, and aifm
is represented by m loops at vertex i. The graphs for a1 ais a3 a%4 99 Q24 434, a%l a12 a16 A23 a§4 ase
and a}; a?, a?; are shown in Figure 16. The odd index terms create cycles in the graph, all of which
contribute zero to the expectation value of the trace. The terms which do contribute have double
edges and/or loops. What is a remarkable property of all terms is that there seem to be no disjoint
graphs, only connected ones. This happens because the numbers of indices ¢ and j in each term are
such that some of the ¢ and/or j recur and overlap between factors. For instance, we do have 11
12 24 but not 11 22 24 or 11 23 45. 1 have not sought an analytic reason for why this is the case,
but have verified it for the trace of A% where A is the general symmetric real 6 x 6 matrix. I wrote
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a computer program to examine the indices of all factors in all 48,966 different varieties of terms,
there being 6% = 1,679,616 terms in all, though many share the same factors. There were no disjoint
sets of indices.

4 3
23 I 2 3
2 6
1
11 12 13 14% 22 24 34 11712 16 23 34236 114122132

Figure 16: Graphs representing three typical terms in the trace of A% for A a 4x4 symmetric matrix.

Of the three graphs in Figure 16 only the third one contributes to the trace; the other two,
with cycles, have zero expectation value. The rightmost graph in Figure 16 could also be seen as
describing a path around a V-shaped tree — compare it with the path in red arrows round the tree
on the right of Figure 13 — were it not for the four loops at the tree root. Recall that a vertex with
multiple loops makes a heavily weighted contribution to the expectation value. In the approximation
of the trace by the number of contributing terms, in §4.3, we weighted each square factor with 1
(instead of the true values, 3, 15, 105, etc., for higher powers). In a representation of this as a tree
graph, this approximation is equivalent to converting each loop at a vertex into a leaf. This is done
by adding a fictitious vertex half way round the loop, as shown in Figure 17 where four loops have
been replaced by two there-and-back paths to fictitious vertices 1’,1”. In this way each term becomes
represented by a tree with k edges, and a path 2k long around these edges.

2 3 L 3
1 il e
1
i il
a) with loops b) with fictitious vertices

Figure 17: Removing loops by introducing fictitious vertices to produce a tree graph.

So every square factor aiJZ in the expectation value of Tr(A J\?k) becomes represented by the
there-and-back path round a single edge in a tree graph. There are C edges, Cy + 1 vertices in
the tree representing each contributing term in the trace, thus making the total degree of the term
2k. The approximation being made in the limit of large IV is that the total number of terms is
given by saying that each vertex can take any of N values independent of what happens at the other
vertices. As an example, for N = 3, 2k = 4 there are 2 edges, 3 vertices which can be arranged in
Cy = 2 configurations (see Figure 14, top panel). If each vertex can be assigned the index 1, 2 or
3 independently of the others, there will be 2 x 33 = 54 contributing terms. The true number is 45

30



because there are overlaps which cause some configurations such as aj; to be counted more than
once. As a further example, take the case of Ag where N = 6, k = 4. There are now 5 vertices
in the suite of C4 = 14 tree graphs. These graphs can readily be drawn from the mountain range
diagrams in Figure 14. The top left /VV\ shape in Figure 14 translates to the right tree in Figure
17. In this if each vertex is allowed to take any of the 6 indices, 1 to 6, there will be 5% = 15625
terms contributing to the expectation values of the trace. Multiply this by the 14 configurations
and the approximation predicts 218,750 contributing terms. Table 2 shows that this is a large over-
estimate; the correct numbers is 82,896. However, we also understand that this over-counting partly
compensates for neglecting the weighting of the higher powers such as af-‘j. When the weightings for
a Gaussian distribution are including, the expectation value of the trace is 175,080, from the list in
Table 5. The 218,750 is 25% over this. Generalising, the approximation is C N**! as found in §4.3,
Table 5, as the limiting value of ry.

The two approaches to proving Wigner’s semicircle theorem, discussed in §4.1 and and §4.3
have now met in the middle so we can consider the theorem proved. In fact, the analysis in §4.3
gives insight into the trace of the matrix powers so that we see that, for finite N, approximating
the moments by C, N* is an over estimate for matrices whose elements come from both an uniform
distribution and a Gaussian one. We might ask whether there exists a distribution of a;; which fits
closely to the C N* formula. It probably will be more peaked and narrow than the NJ0, 1] Gaussian.

5 Electric charges spaced under Coulomb repulsion

The spacing of eigenvalues along the number line has been likened to the equilibrium spacing of
negatively charged particles against a restraining force. The negative particles repel one another and
would fly apart if they were not held by some force of attraction. The models used are 2-dimensional,
and the general concept is illustrated in the left panel of Figure 18. It shows 13 lines of negative
electric charge in a planar array, at positions from u; on the right to w13 on the left, with the central
charge, number 7, at the origin. Several forms of constraining force can be postulated and I have
examined two:

1. a positive electrostatic charge applied on parallel plates either side of negative array, as shown
by the red strips in the right panel of Figure 18,

2. mechanical constraint through a set of springs, one spring attached to each line charge at one
end and fixed to the origin at its other end.

The purely electrostatic model, 1, is easy to picture. Within the region occupied by the positive
charge, the negative line charges space themselves almost equally, but outside this region the forces
of constraint are less so the charges move further apart, just as do the eigenvalues in the semi-circle
law limit.

5.1 The electrostatic analogue

The starting point for both these models is Coulomb’s inverse square law for the force between two
point charges. We will first derive the repulsive forces in the 2D model illustrated in the left panel of
Figure 18. Here are a finite number of lines of negative charge in the x —y plane, extending infinitely
along the z axis and spaced apart along the x axis at positions uj, j =1,...,N. The constraints we
apply will ensure symmetry about the origin, making uy = —u1, uy_1 = —ue, etc. The calculation is
in four steps:

1. calculate the repulsive force between two isolated lines of negative charge,
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Figure 18: Left: Lines of negative change in the x — z plane at x positions u; to uy, N = 13.
Right: the array lying between two sheets of positive charge at equal separation in y. All components
extend to z = +o0.

2. propose a restraining force. In the electrostatic model this is between one line of negative
charge and the parallel strips of positive charge,

3. specify a number of line charges, add all components of force on each, and look for positions
of the lines at which the net force on each is zero. This involves the solution of simultaneous
non-linear equations.

4. increase the number N of line charges indefinitely, calculate their separations, look for trends,
and compare with the statistics of samples of random matris.

Step 1: Inter-charge repulsive force The left panel of Figure 19 shows a ‘point’ negative charge
¢ in three dimensions a distance h from a line of negative charge with charge density o1 per unit
length. In the usual way of these calculations, consider the Coulomb repulsive force between ¢ and
the element of line charge at position z which is subtended by angle d« at ¢. If z is measured from
the foot of the perpendicular from ¢, we have cosa = h/r, tana = z/h, tan(a+da) = (z+dz)/h. From
this "

0z = 5 dor.
cos? o

Taking the electric permittivity constant to be 1, by Coulomb’s law the force at separation r is

1 h  cos®a qo1
0f = q(0102) = = gqo1 —— ——da = —
f=alon )1"2 190 ot R2 h
and acts along the direction of r. Since the line charge extends to infinity, the total force is the sum
over all such elementary forces between o = +5. The 2 components sum to zero by symmetry while
the z components produce a net repulsion of
qor (72 qoi

cosada = 2— (19)

L h

So the force falls off inversely proportional to the separation distance. We now want the force between
two lines of charge, so consider ¢ to be an element ¢z of a line of charge with density also o1 per unit
length: ¢ = 016z. The magnitude of the force per unit length of one line upon the other is therefore
fz = 20% /h. T use the sign convention that if a force pushes a line charge to the right it is reckoned
as positive, and to the left, negative.
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Figure 19: Left: negative point charge g at distance h from a line of negative charge along the z axis.
Right: End view of line of negative charge distance d from a strip of positive charge (red).

When there are N line charges, the total repulsive force on the charge at u; is

N 1

20% Z

ki Ui T Uk

(20)

This takes account of the signs + and —; charges to the right of u; push it to the left, while those to
the left (u; > uy) push it to the right.

Note that this Coulomb model of line charges is referred to in the literature as the ‘log-gas’
model. This comes from the fact that the potential energy stored in a collection of line charges is
equal to the energy required to bring each from infinity to be a distance h from a reference line
charge at the origin. This is the integral of 20% /h over h and equals 20% Inh. Thus the spacing of
eigenvalues is being seen as determined by the energy stored in an array of charges, which is a sum
over terms involving the logarithm of their separation.

Step 2: Constraining force. In the model where the constraining force is due to a spring attached
at the origin, this force is simply —S(u; — L;) where S is the spring constant and L; the natural
length. I discuss the choices of S and L; in §5.2 below.

In the electrostatic model with the positively charged parallel plates, the formula is more
complicated. The right panel of Figure 19 is viewed at a right angle to the left panel, with the z
axis into the paper. We are looking end on at one infinite line of negative charges positioned d from
a sheet of positive charge, which is also infinite into the paper. The charge density on the line is o3
per unit length and that on the positive strip is oo per unit area. There is a similar sheet of positive
charge at 3 = —d to constrain the line charge to the  — z plane. Similar to Step 1, 6z = d 3/ cos? 3
and the x component of force on the line charge from the elements at « on the two sheets is

O0F, = 401 (0og0x) % sinf8 = 40109 tanB403.

The positive strips have finite width, from S5 on the left to 81 on the right, so the total z component
of force is

Fy = 401 02[In(cos B2) —In(cos B1)] = 4oy 02 hl(cosﬁ?) '

cos 1

The force attracts the line charge towards the mid-line of the two parallel strips. Note that if
|B1] = |B2| the force is zero; if 51 = B2 the strip has no width so cannot exert a force, and if 1 = =[5
the net force is zero because of symmetry. Only the excess length to one edge of the strip compared
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with the other edge contributes to the x component of force. If x is measured from the foot of the
perpendicular, and the left and right edges of each strip are at x2 and z1 respectively, this x—directed
force can be written also as

d? + 2 )

d? +z,?
In the right panel of Figure 19 z = u = 0 at the mid-line of the plates, the right hand end line charge

is at uy > 0, the left at —u; < 0, and the edges of the plates at u = +a. The attractive force in the
z-direction on the charge at u; due to the two plates, per unit depth in z, is

d?+ (a—wuy) 2 S0

—_— U; :

d?+ (a+uj)?)’ !

This term, being attractive, should be negative in the sense that it moves the line charge towards

the origin. For u; > 0 this is indeed less than zero, hence the + sign. Since we require the whole

system to have no net charge, 4a 02 = 20;. We can also normalise distances by taking d = 1, and so

arrive at the attractive force of constraint

2N ( L+ (a-uj) 2

— In|—F
1+ (a + ’U,j)

F, = 20109 ln( (21a)

20’1 O'QID(

), u; > 0. (21b)
a

5.2 Equilibrium positions.

This is Step 3. The equilibrium positions are found by solving the N div 2 simultaneous equations

N 1

20% Z

kit Wi Uk

- C’(u]) = 0, UN+1-k = —Ug (22)

where C(u;) is the constraint force on the 4% line charge. The purpose of this analogy is to have the
equilibrium positions correspond to the expectation values of the eigenvalues of an N x N symmetric
random matrix with elements from NJ0, 1], U[0, 1], etc. so the parameters of the constraint need to
be chosen appropriately.

Regarding the spring model, I tried various values of S and L; and quickly found that S =1,
L; =0 gives the best fit — indeed, in some cases it can be shown to give an exact fit. L; = 0 means that
each spring has zero natural length, so the displacement of a line charge from the origin to u; means
an extension of u;. I will soon show that this spring model predicts ezactly the expectation values of
the characteristic polynomials of random matrices. There then seems little point exploring further
the other model of constraint using positively charged plates. The latter, however, was the first
model I investigated, and it is not without interest, so I give some results from it in the Appendix,
§8.

Focusing therefore on the spring model, consider as an example the case of 5 charges, the
central one at O. The two simultaneous equations for zero net force are

3 2 2

— 4+ + -u; = 0,
U1 UL —UY UL+ U

3 2 2

—+ + -uy = 0.

U9 U2 — U] UL+ U
These are symmetric in u; and uy. By multiplying out each we obtain from the numerators two
quadratics in p = ulz, q= u22:

u‘f—?u%—u%u%+3ug =0, ué—?u%—u%u§+3u% = 0.
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P =Tp-pg+3q = 0, ¢*=Tq-pg+3p = 0.
From the first ¢ = (p? - 7p)/(p — 3) which, when substituted into the second, gives

8p(p? - 10p + 15)
p?-6p+9

The numerator contains the defining polynomial u15 - 1Oui3 + 15u; which is exactly the characteristic
polynomial for a N =5 random symmetric matrix from N[0, 1] as determined in §2.2, Eq 4. In other
words, for NV =5 at least, this spring model is an exact analogy.

For N =11, the largest random matrix for which I could directly compute the mean charac-
teristic equation (§2.2), the spring analogue gives roots from which the characteristic equation can
be calculated as

(A2 - 5.188%) (A\? - 3.93622) (\? - 2.8651%) (A% - 1.87607) (\? - 0.9289*)\ = 0,
which evaluates to machine accuracy to
N=11: A" = 55)7 4+ 9907 - 6930A° + 17325)3 — 10395,

precisely as determined directly from the matrix by averaging products of elements. This holds for
all the other characteristic polynomials at Eq 4, §2.2 and gives strong evidence that this model will
hold for all N. The next section reveals the true nature of these polynomials.

6 Matrix mean characteristic polynomials revisited

The process of solving the simultaneous equations and creating the polynomial of which they are the
roots allows us to extend the sequence of mean characteristic polynomials above 11. I find

N=12: M2 — 66010 + 1485X% — 138601° + 51975X* — 6237002 + 10395,

N=13: A3 — 782" + 214507 — 2574007 + 135135)\° — 270270\ + 135135\.

Reference to the On-Line Encyclopaedia of Integer Sequences (www.oeis.org, sequences A001498,
A001498) shows that the coefficients are the so-called Bessel numbers. These are less famous than
the Bessel functions, the renowned functions associated with cylindrical symmetry. The general
formula for the mean characteristic polynomials is

N
(=2)F kI (N = 2k)!

2%k < N (23)

N
Pn(A) = > Cyn AN2E Ci,N =
k=0

This is one of the main results of this article. It summarises all the polynomials in §2.2 and above.
Using it we can in principle solve numerically for the mean characteristic polynomial for any N, and
so determine the expectation values of all eigenvalues of any symmetric random matrix with elements
drawn from a population having mean 0, variance 1.

Naturally I wondered whether these polynomials Py () satisfy a differential equation. With
some algebraic over-kill, and setting coefficients to zero, I find that they do satisfy the rather general
fourth order equation
d*Py dPy

4 3
dPv  pdPv o + D= + EPy =0

A
d\* d\3 d\? dA
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where

A= cA + d

B= c(N=2-X2) + g\ = m - r

C= —(d+g)\* + mA + 2N -3)d + (N-1)g — s

D= 722 + sA + (N=-2)(N-1)c - (N-1)(m+7)
= -NrA + N(N-1)(d+g) - Ns

where ¢, d, ... s are arbitrary parameters. Setting ¢ =d = g =0, r = —m gives the second order
equation
d? Py dPy
- A + NPy =0 24
N2 A N (24)

which I take to be the lowest order differential equation which these polynomials satisfy. If A were to
be replaced in Eq 77 by 2A and N by 2N, this would be the standard form for Hermite’s equation.
So the characteristic polynomials of §2.2 are cousins of the familiar Hermite polynomials. Indeed,
for all N

PNO) = gt () (25)
where H (x) are the Hermite polynomials. This is a remarkably simple result. Since the Hermite
polynomials are readily available in computer software packages, their zeros can be found and the
development of the mean eigenvalues explored as N become large. Recall that Hermite polynomials
are the eigenvalues of the quantum mechanical treatment of the harmonic oscillator. Perhaps there-
fore they are not unexpected in our context because a linear spring force is equivalent to a quadratic
potential, as assumed in the harmonic oscillator.

6.1 Statistical comparison with random matrices

It is important to bear in mind that the Hermite-like polynomials derived from the Coulomb charge-
linear spring analogy strictly only give the equilibrium positions of the line charges in this model.
The only evidence that the zeros of these Py () also give the mean eigenvalues of random matrices
with mean 0, variance 1 is the fact, presented in §2.2, that they do agree with the mean characteristic
polynomials for random matrices up to N < 11, 11 being the largest square matrix for which my
computer could calculate the characteristic polynomial. I have not proved this correspondence in any
deeper sense. For this reason I consider it necessary to make at least some limited direct comparison
between the charge equilibrium positions and the mean values of eigenvalues from several samples of
matrices. Such is the spread in eigenvalues that one would need hundreds of samples to obtain close
statistics. I offer only a limited comparison for N = 21 and 45.

I constructed 100 N = 21 symmetric matrices with all elements (including the diagonal ones)
drawn from the Gaussian N[0, 1] population, and sorted their eigenvalues into ascending order. The
negative ones were paired with the corresponding positive ones by order since these should have the
same magnitude on average, and hence I calculated their aggregated mean absolute values and stan-
dard deviations. Thus 100 matrices furnish 200 instances of each eigenvalue. In Table 7 the results
are compared i) with the roots of the characteristics polynomial and ii) the equilibrium positions u
in the fully Coulomb electrostatic analogy (see Appendix). The roots of the polynomial from the
spring model compare quite well with the experimental means, though the standard deviations are
relatively large. The alternative model with electrostatic retaining force consistently under-estimates
the average eigenvalues. It became clear at this stage that this alternative model fails by increasing
amounts as N increases.

36



Expectation mean of 200 standard %
eigenvalue  eigenvalues deviation U difference
7-85 8-17 0-77 7-85 4%
6-75 6-87 0-59 6-02 14%
5-83 5-90 0-53 5-19 14%
4-99 4-98 0-48 4-47 11%
4-21 4-20 0-46 3-81 10%
3-47 3-42 0-42 3-15 8%
2-75 2-69 0-42 2-52 ™%
2-05 2-01 0-45 1-88 ™%
1-36 1-34 0-43 1-25 ™%
0-68 0-65 0-39 0-63 4%
0 0-03 0-42 0 0

Table 7: N = 21. Comparison of expectation values of eigenvalue (column 1: from roots of char-
acteristic polynomial) with mean experimental values (columns 2, 3) from sample of 100 N = 21
symmetric matrices from N[0, 1]. Columns 4, 5 shows the equivalent results from the alternative
electrostatic model and its percentage difference from the mean — see Appendix.

Table 8 presents an equivalent comparison between the roots of the spring model polynomial
and the average of 60 samples of each eigenvalue obtained from 30 N = 45 random matrices. The
agreement again gives confidence in the spring model, though the standard deviations are still typi-
cally 5 to 10 percent of the mean. Clearly one could go on making such statistical comparisons, but
I accept at this stage that the Coulomb gas model with springs providing the constraint forces does
correctly predict the expectation values of the eigenvalues.

eigenvalue mean std. devn. H eigenvalue mean std. devn.

12.24 12-58 0-60 4-76 4-76 0-28
11-29 11-42 0-57 4-26 4-27 0-33
10-50 10-54 0-47 378 378 0-35
9-79 9-89 0-42 3-29 3-32 0-29
9-14 9-21 0-43 2-81 2-87 0-32
8-52 8-60 0-36 2-34 2-33 0-36
7-94 7-99 0-39 1-87 1-84 0-33
7-37 7-44 0-36 1-40 1-42 0-33
6-82 6-91 0-36 0-93 0-92 0-35
6-29 6-37 0-33 0-47 0-53 0-34
5-77 5-82 0-36 0-00 0-00 0-35
526 532 0-34

Table 8: N =45 : Comparison of roots of characteristic polynomial with the mean of 60 sets of all
eigenvalues from 30 random matrices.

In the 1990s Craig Tracy and Harold Widom from the University of California published
an analysis of the distribution function of the largest eigenvalues’. The so-called Tracy-Widom
probability distribution is a skewed bell-shaped function with a negative mean and a longer tail on

"Commun. Math. Phys. 177, 727-754 (1996), ICM 2002 Vol I1I-1-3 ,
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the high side®. Figure 20 is a plot of the Tracy-Widom probability density for 3 = 1 appropriate
to real values random matrices, obtained from data in a paper by Andrei Bejan (on the internet).
Note that the mean is at —1-27 and the mode at —1-35. The derivation of this distribution involves
Airy functions, these being Bessel functions of order 1/3, and the exponent 1/3 or 1/6 features in its
properties. For instance, the width across the central body of the probability density curve has been
shown to scale as 1/N /6 which evaluates to 0-53 for N =21 and 0-60 for N = 45. The distribution
has achieved a degree of fame because it has been shown to be another statistical phenomenon which
has universality; it applies to many situations where the details of the underlying sub-processes do
not have a strong affect on the combined outcome.

-6 -5 -4 -3 -2 -1 0 1 2 3 4

Figure 20: Probability distribution of the Tracy-Wisdom distribution for g = 1, for the largest
eigenvalues of real symmetric random matrices.
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Figure 21: Histograms of |\j4| for 200 eigenvalues for N = 21, and 60 for N = 45. The over-laid
curves are the Tracy-Widom distribution for that value of N.

8 The T-W distribution has three versions which strictly apply to the three types of symmetry identified by Dyson
and labelled f = 1, 2 or 4. 8 =1 corresponds to real symmetric matrices, but ones which have twice the variance of

diagonal elements than the matrices which I have used.
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The two panels of Figure 21 present histograms of |\;,q.| for the 200 samples at N = 21 and
60 at IV = 45 respectively. Over-laid on these are the corresponding Tracy-Widom probability density
curves, suitably scaled. The agreement is fair.

6.2 Trends in mean eigenvalues as N —» o

I have solved 20 polynomials, Eq 25, for N up to 500 to obtain the line charge equilibrium positions
and hence mean eigenvalues. Wigner’s semi-circle law is well illustrated in Figure 22 for N = 500.
This plots the mean gaps § between adjacent eigenvalues as a function of their mid-value. Also shown
is the reciprocal, 1/d, which is proportional to the density of equilibrium positions (i.e. eigenvalues)
along the number line. Compare with Figures 7 and 8 for one N = 2435 matrix.

N=500 midpoint

50 40 30 20 10 0 10 20 30 40 50

Figure 22: Wigner’s semi-circle law as expressed by 1/6 for N = 500 (blue curve). The red curve
plots the gap, J, between adjacent eigenvalues (scaled up by 10) against mid-point between adjacent
eigenvalues.

The exact mean eigenvalues means that an improved approximation to |Amqz| as a function
of NV can be constructed. A modified version of Eq 6, §2.2., is
N -1

[Amaz| ~ 3 — B = 181952 NO0131495 (26)

which has error typically less than 0-05 for N <500. Note the N + 2 in the denominator, compared
with NV + 1 before. For the N = 2435 matrix presented in §2.2 and 2.3 this predicts an expectation
value of 99 - 40, very close to the observed values of 99 -378 and —98.996. There is another form of
approximation in the literature which maintains a close link with the limit of the Wigner semi-circle
law by approximating the deficit from the limiting value 2v/N. The form is

2VN = mas| » le/v (27)
where |A\pq2| means the expectation value. Fitting this to my 20 data points up to N = 500, u = 2-07,
v = 6-66. Indeed, this is a marginally better fit than the revised expression involving 3 above.
The power of 1/6 has resonances with the Tracy-Widom law, where a cube power is involved in
the derivation. Also I point out below that the ratio of largest to smallest gap seems to be a cubic
function. If v is constrained to be precisely 6, the best fit value of p is p = 2-20. This should be
compared with the mean of the Tracy-Widom distribution, which is 1-21. There is a small possibility
that the largest experimental value of 2-2 may be closer to the correct value for the matrices I have
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used, which have a smaller variance of the diagonal elements than the GOE matrices for which the
Wigner semi-circle and Tracy-Widom distributions were derived (1 compared with v/2).

Another set of interesting quantities is the gaps between the largest pair and smallest pair
of eigenvalues for any given N. These decrease as N increases, rapidly for N small, much more
gradually for N large. Call the gap Az — A2 = 91, the gap Ao — A3 = d2, and call the smallest gap,
at A =0, A;. I find that all these gaps and the ratios between them can be fairly well represented by
functions of the form bNP. Table 9 below gives the values of b and p. The ratio in the bottom row
means that the largest gap grows relative to the smallest roughly as 0-6 ¥/ N — another appearance of
1/3 power. These growing gaps between adjacent eigenvalues at the two extremes is the mechanism
by which the semi-circle distribution develops.

quantity ‘ b P
01 1-97636 -1/5-3
) 177227 -0-20588
s 2-98029 -0-48864
01/0s 0-62255 +0-31498

Table 9: Parameters b and p in the functions bN? which approximate the two largest gaps, §; and
d2, the smallest, d5 and also the ratio d1/ds.

7 Concluding remarks

This has been a amateur’s attempt to explore some basic aspects of random matrices. The literature
shows a vast mountain of sophisticated mathematics and applications built on foundations like these.
It has been a surprise to find that the average values of eigenvalues of a wide class of symmetric
matrices are numerically identical with the equilibrium positions of negative electric line charges
constrained by springs about a central position. The matrices for which this is true all have elements
drawn from populations with a) mean = 0, b) variance = 1, ¢) all higher moments being finite. Recall
that where the statistics do not meet these requirements, as with the continued fraction distribution
of §3.3, the eigenvalues do not match the equilibrium positions.

In the physical analogues the equilibrium positions of line charges are determined by the
balance of mutual repulsion according to Coulomb’s law, whose force varies as 1/distance (in 2
dimensions), and the restraining spring force which varies directly as distance. What are the cor-
responding forces on the eigenvalues of random matrices? For instance, ould these be equivalent to
the mean and the variance which are the only parameters of the matrix elements. Consider that the
variance describes how separated are the matrix elements — it measures what is ‘pushing’ the ele-
ments apart. The mean, in contrast, is a anchor holding the elements to a central position. Moreover
the variance is a quadratic quantity, similar to the retaining electric potential in the Coulomb gas
model. Of course, the link between matrix elements and eigenvalues is a convoluted one, so ‘forces’
between elements cannot map readily to ‘forces’ between eigenvalues, though the mean value of 0
is the same for each. I suspect — but have not examined the literature on this — that the spread
in values of the eigenvalues about their respective mean positions can be likened to the spread in
displacements about their equilibrium positions of line charges under thermal agitation.

Can this be pushed to speculation as to whether there are ‘forces’ between the complex
zeroes of the Riemann zeta functions, against a background of constraint? One obvious difference
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from matrices is that there is a sequence of matrices of increasing size IV, from which the study of
smaller matrices can enlighten ideas about how N tends to infinity. In contrast I know of no N-
indexed sequence of entities whose limit is the zeta function, which has an infinity of zeros. Perhaps
zeta-like functions over finite fields of increasing order have a role here? I must leave this to the
professionals.

John Coffey, Cheshire, England, 2018
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8 Appendix: Electrostatic constraint in Coulomb line charge model

I explained in the main text that the spring model of constraint furnishes an exact analogy with the
mean eigenvalues of a random matrix, and that the electrostatic model of constraint does not hold
as N increases. It does, however, give decent approximations to the eigenvalues for small N, and
since my approach has been to start with N small and build on that, this model initially seemed
promising. This Appendix therefore examines what would be Steps 3 and 4 of the equilibrium of
Coulomb forces model analysed in §5.1.

8.1 Two line charges in equilibrium

The formula for the x component of force between a line charge and the pair parallel plates is given
in §5.1, Eq 21a, b. Taking things in small steps, I first introduce only 2 line charges between the two
positive sheets of charge and look for their equilibrium positions. Clearly these will be symmetrically
placed with respect to the plates, which each have half-width a. The z-position must now be reckoned
from the mid-line of the plates. The only variable here is u; so the equilibrium positions are at +u
where the attractive and repulsive forces have equal magnitudes. So we look for roots u; of

_ 2
a pfitle-uw)”y o
Uy 1+ (a+up)?

This is intractable analytically, so I have found numerical solutions for a range of the parameter
a. The two panels in Figure 23 plot the equilibrium position of the right hand line charge as a
function of a. The left panel is where the positive plates are narrow and the negative charges may
protrude beyond the ends of the positive strips. When a = %\/e —1=0-655, u; = a meaning that the
line charges at precisely at the edges of the strips. When the strips are reduced to a line’s width,
up = 1/v/3 = 0-577. In this limit the positive and negative charges are arranged at the vertices of
two touching equilateral triangles, which is a close-packed configuration as one might expect. In this
left graph the fitted curve is a fourth order polynomial but the coefficients of a* and a3 are small,
so the curve is close to being a parabola. The right hand graph is for where the parallel strips are
wider and the line charges are always well inside them. Here the equilibrium positions are a linear
function of strip width.
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Figure 23: Equilibrium positions +u; of two symmetrically placed lines of negative charge as a
function of the half-width a of the two parallel strips of positive charge, 2 units apart.
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As an aside, I checked the above theory against a finite element model to gain confidence
that it was consistent. I used the free Ansoft Corporation program MaxwellSV, 2002, and set up
a model in the x -y plane with two symmetrically placed line charges each of 1 x 10~ Coulombs
per unit depth in z, with the plate semi-spacing d set at 1 mm. The force in newtons on one of the
lines charges was calculated, and Figure 24 is a plot of the x components of force for a = 1-25 mm.
In the FEM calculation the y component of force proved a good way to monitor the quality of the
convergence since theoretically it should be zero. No arbitrary scaling factors have been introduced
in plotting these results — the scales are absolute. As Figure 24 makes plain, the agreement is very
good and shows that the net © component of force is zero when u; = 0-930 mm.
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Figure 24: The net force on one line charge from the combined effect of a second line charge and
the two parallel strips. Comparison of theory (green line) with values calculated by a finite element
model for the case a =1-25 mm =0-00125 m.

8.2 Equilibrium spacings of several line charges

More line charges are now added and we seek a method to determine the equilibrium positions as
N, the number of lines, increases to infinity. When N is odd, the middle line charge will position
itself centrally at = = 0 with the others symmetrically positioned to either side at +wuq,+us, etc.,
u1 > ug > ug > ... For N = 2n or 2n+1 there are n simultaneous equations to solve, and for small n this
can be done with a multi-dimensional version of Newton’s method. I have found that Mathematica 10
copes well. Overall charge neutrality requires that Noj = 4acs. If we take o1 = 1, then o9 = N/(4a).
As an example, here are the two simultaneous equations for N = 5:

2 2 2 2 5 d?+ (a—up) ?
+—+ +—+—20100In| ————""2=] = 0,
Uy —uy Uy up+us  2u;  4da d?+ (a+uy) 2
2 2 2 2 5 d? —ug) 2
- +—+ +—+—.207021n M = 0.
UL — Uz U2 Ul +us  2us  4da d? + (a +ug) 2

I have set up and solved numerically similar equations for the number of line charges ranging
from 2 to 21 for various values of a. The positions of the line charges vary widely with a, obliging
us to choose one value of a at which to make the comparison. The need to make this selection is a

43



distinct weakness of this model. I choose a = ae,, the value of a at which u; = A\jjq. This has found
for each N by numerical searching. Table 10 lists the value of a., and the corresponding equilibrium
positions of the line charges for NV up to 11. These compare quite well with the mean eigenvalues.

N G 1 2 3 4 ) 6

2 1.71 eigenvalues 1
positions 1

3  2.24 eigenvalues 1.732 0
positions 1.732 0

4  2.69 eigenvalues 2.334 0.742
positions 2.332 0.745

5 3.09 eigenvalues 2.857 1.356 0
positions 2.856 1.362 0

6 3.45 eigenvalues 3.324 1.889 0.617
positions 3.324 1.896 0.625

7 3.78 eigenvalues 3.750 2.367 1.154 0
positions 3.752 2371 1.170 0

8 4.08 eigenvalues 4.145 2.802 1.637 0.539
positions 4.146 2.798 1.654 0.549

9 4.37 eigenvalues 4.513 3.205 2.077 1.023 0
positions 4.523 3.195 2.097 1.042 0

10 4.60 eigenvalues 4.859 3.582 2.484 1.466 0.485
positions 4.851 3.538 2.486 1.481 0.492

11 4.85 eigenvalues 5.188 3.936 2.865 1.876 0.929 0
positions 5.188 3.878 2.858 1.891 0.942 O

Table 10: Expectation values of eigenvalues of N x N symmetric random matrices with mean 0,
variance 1 compared with the equilibrium positions of N negative line charges between two positively
charged plates of half-width a., and separation 2 units. The + signs are implied.

The agreement, of course, does hang on our seeding the value of |A\j4z|, and the only guide
to this is an approximation such as Eq 26 or 27 obtained by extrapolating from small values of N.
As an illustration, consider N = 21. I used Mathematica 10 to solve the 10 simultaneous equations
for the charges. To get started take A,,q: from the formula concocted for 8 at Eqs 6, 26 which is
7-847. We do not know the value of a., which will make u; = 7-847, so an initial guess is a value
somewhat less than this. After a little iteration I have found that a., = 6 - 147 and the equilibrium
positions are

uy=7-847, us=6-023, us=5-185, wuy=4-475, us=3-805,
ug=3-155, u7=2-515, ug=1-882, wug=1-253, wuio=0-626, wui; =0.

The results are compared with the equilibrium positions u in the Coulomb electrostatic analogy in
the rightmost columns of Table 7 in §6.1 of the main article. It is already clear that for all eigenvalues
this fully electrostatic model under-estimates the value.
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Having understood the success of the spring model of constraining force, it is easy to see why
the electrostatic constrain model works for N small. By expanding the logarithmic force term as a
Taylor series about v = 0 we find that it is approximately

2N 2N(a?-3)
- U - ———— U
a?+1 3(a?+1)3
Where the second term contributes little there is an almost linear relation between force and position

u, just as in the spring model. Indeed, equating the first term with the spring force —u gives the

critical value of a as
ey ¥ V2N -1. (28)

This agrees well with the values found in the numerical experiments. For large N, the ratio aey/|Amaz]
would tend to 1/v/2, but the model has broken down long before then.
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